Aids to Answering the ABG VAQ Don Liew, May 2013

1. What does the clinical stem suggest? Consider carefully the patient's demographics, symptoms and signs (if provided). Determine a list of differential diagnoses from the stem alone, and prop features you'd expect to see.

2. Is the pH high (alkalaemic) or low (acidaemic)? This is the principal (dominant) finding, and result of the primary pathology. Compensatory mechanisms do NOT fully rectify the pH derangement.

3. Review the pCO₂ and HCO₃ combination:

Primary Derangement	Primary Pathophysiology	Secondary Change	Compensatory Response	Applicable Formula for Expected Secondary Change
Low HCO ₃	Metabolic Acidosis	Low CO ₂	Hyperventilation: Respiratory alkalosis	pCO ₂ = 1.5(HCO ₃) + 8 +/- 2
High CO ₂	Respiratory Acidosis	High HCO₃	Increased renal excretion of acid (hours to days): Metabolic alkalosis	HCO ₃ = 24 + 4 x [(pCO ₂ - 40) / 10]

• If alkalaemic:

Primary Derangement	Primary Pathophysiology	Secondary Change	Compensatory Response	Applicable Formula for Expected Secondary Change
High HCO₃	Metabolic Alkalosis	High CO₂	Hypoventilation: Respiratory Acidosis	pCO ₂ = 0.7(HCO ₃) + 20 +/- 5
Low CO ₂	Respiratory Alkalosis	Low HCO ₃	Decreased renal excretion of acid (hours to days): Metabolic Acidosis*	HCO ₃ = 24 - 5 x [(40 - pCO ₂) / 10] +/- 2

4. If metabolic acidosis, calculate the Anion Gap and Delta Ratio.

Anion Gap = (Measured Na+) – (Measured Cl⁺ + Measured HCO₃). Should be 12 or less.

- **HAGMA Causes:** Lactate (sepsis, hypovolaemia, hypoxia), ketosis, uraemia, salicylates, toxic alcohols, isoniazid.
- NAGMA Causes: Renal tubular acidosis, diarrhoea, acetazolamide.

Delta Ratio = (Measured Anion Gap – 12) / (24 – Measured HCO₃)

Delta Ratio	Pathophysiological Processes and Explanation		
> 2.0	HCO ₃ reduction is less than expected, <i>AND / OR p</i> re-existent high HCO ₃ There is a co-existent metabolic alkalosis		
1.0 to 2.0	"Pure" HAGMA		
< 1.0, > 0.4	HCO_3 reduction is greater than expected, owing to co-existent HCO_3 loss (renal, GI) This is a mixed metabolic acidosis		
< 0.4	Probably no acid added to system; just HCO ₃ loss This is a normal-anion gap / hyperchloraemic metabolic acidosis		

5. Causes of Other Pathology

Pathology	Causes		
Respiratory Acidosis	Severe lung disease (whatever also caused hypoxia)		
	CNS depression		
	Restrictive Pathology		
	Fatigue		
	Paralysis		
Respiratory Alkalosis	Pain, Anxiety		
	CNS Stimulation		
	Excessive Artificial Ventilation		
Metabolic Alkalosis	A. Volume Deplete / Urinary Cl <10mmol/L / Saline Responsive:		
	Diuretics		
	Vomiting		
	<i>B. Volume Replete / Urinary Cl >10mmol/L / Saline Non-Responsive:</i> Exogenous Alkali		
	Mineralo-corticoid excess		
	Severe Hypokalaemia		
	Post Hypercapnoeic Hyper-ventilation		

6. Correct Na if hyperglycaemic:

Corrected Na+ = (Measured Na+) + [(Measured glucose -5) / 3]

7. Calculate predicted K (when pH corrected):

Acidaemic:	Predicted K+ =	(Measured K+) -	– [(7.40 – Mea	sured pH) x 10 x 0.5]
Alkalaemia:	Predicted K+ =	(Measured K+) -	+ [(Measured	pH – 7.40) x 10 x 0.5]

8. Calculate A-a gradient, by first dete	ermining pAO ₂
--	---------------------------

```
pAO_2 = FiO_2 \times (760 - 47) - (paCO_2) / 0.8
```

Then: A-a gradient = $pAO_2 - paO_2$ Should be (age in years) / 4, or less.

9. Relevant Negatives

Of the stem and the prop. Features absent, but expected to be present, or potentially so.

10. Conclusion(s)

Probable diagnoses, and differentials.

11. Implications

What does all this mean for the patient? Consider if the implication is for:

- Further assessment (where the diagnosis remains unclear)
- Management (clear diagnosis which mandates early therapeutic intervention)
- Prognosis (scenario predicts a particular outcome)
- Combinations of the above